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1 Introduction

When high power is applied to an rf cavity the temperature of its inner
surface will rise. The temperature increase will be governed by the incident
power, the heat capacity and the heat conductivity of the walls. This short
note will provide a formula to calculate the increase once these quantities are
known.

2 The Equation for Heat Diffusion

The diffusion of heat into a solid body is governed by two quantities, the heap
capacity and the heat conductivity. The heat capacity needs to be multiplied
with the density of the body since here the specific heat per space is required
and not – as common – the specific heat per mass. With these quantities the
general equation for heat transfer is

Ṫ =
λ

ρc
4T +

1

ρc
η, (1)

with λ the heat conductivity [W/(m K)], ρ the density [kg/m3], and c the
specific heat capacity [J/(kg K)]. The quantity η is the dissipated power
density [W/m3]. In absence of an external heat source η the temperature
rises if the second spatial derivative of the temperature profile is positive
and it falls in the other case. Once a steady heat flow is established, the
temperature profile is described by a poisson-type equation.

3 Diffusion after switching off the Source

Here the more easy case without an external source η will be handled. This
applies when a certain temperature profile has been established and sud-
denly the heat source is switched off. Furthermore the 1-dimensional case
will be handled. The special example in mind is an quasi-infinite flat body
with power being radiated into it from the surface. The diffusion equation
simplifies to

Ṫ =
λ

ρc
T ′′. (2)
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A way of solving this equation is by using the Fourier transform

f̃(k) =
1√
2π

∞∫
−∞

dxf(x)eikx. (3)

The right hand side of the equation 2 turns into an algebraic equation, and
the whole thing becomes a regular differential equation of 1st order

˙̃T = −k2λ

ρc
T̃ , (4)

which can be solved by

T̃ (t, k) = T̃0(k) exp

(
−k2λ

ρc
t

)
. (5)

The function T̃0(k) is defined by the initial condition(s) T̃ (0, k) = T̃0(k). The
back transformation of this function is

T (t, x) =

√
ρc

4πλt

∞∫
−∞

dξ T0(ξ) exp
(
− ρc

4λt
(x− ξ)2

)
. (6)

Assume the initial temperature profile was a delta function T0 = T00δ(x),
then the distribution after a while t will be

T (t, x) = T00

√
ρc

4πλt
exp

(
− ρc

4λt
x2
)

. (7)

The maximum amplitude of this temperatur profile will decay ∝ 1/
√

t, the
shape is Gaussian with a σ increasing ∝

√
t. Never mind the pathetic case

t = 0, that’s a delta function.

4 Before switching off the Source

The inhomogenous equation is harder to solve due to missing closed solutions
for some of the integrals involved. In Fourier space the solution is simply the
solution of an inhomogenious 1st order equation, which can be found by
“variation of the constant”

T̃0(k)→ T̃0(t, k). (8)
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˙̃T = ˙̃T0 exp

(
−k2λ

ρc
t

)
− k2λ

ρc
T̃0 exp

(
−k2λ

ρc
t

)
(9)

=! −k2λ

ρc
T̃0 exp

(
−k2λ

ρc
t

)
+

η̃

ρc
, (10)

yielding the equation

⇔ ˙̃T0 =
η̃

ρc
exp

(
k2λ

ρc
t

)
. (11)

Assume that the initial condition is T̃ (0, k) = 0, the solution is

T̃ (t, k) =
η̃

λk2

[
1− exp

(
−k2λ

ρc
t

)]
. (12)

Back transformation of this solution posed some problem for me because I
didn’t find a nice solution for neither 1/k2 nor exp(−k2)/k2.

So I decided to find the solution in a different way. Assume the problem
is again a dleta-like source in the origin. After an infinitesimal time dt the
temperature at the origin will have risen to

T =
I

ρc
δ(x)dt. (13)

With the use of the delta function I use the intensity I instead of the power
density η. What leaves us to do is to sum up all the contributions of the
time steps dt , which will be given by equation 7.

T (t, x) =

t∫
0

dτ
I√

4πρcλτ
exp

(
− ρc

4λτ
x2
)

. (14)

This is another nasty integral except for the point x = 0.

T (t, 0) =

t∫
0

dτ
I√

4πρcλτ
= I

√
t

πρcλ
. (15)

Note that this is the solution if the heat distributes in both directions. If I as-
sume the (more realistic) case that the heat can diffuse only in one direction,
I have to apply a factor of two

T (t, 0) = I

√
4t

πρcλ
. (16)
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Figure 1: Temperature map of solid copper irradiated with an intensity of
1 MW/m2 after 50µs at 80 K.

At 200 K Copper has a heat conductivity of 413 W/(m K), a heat capacity
of 356 J/(kg K), and a density of 8960 kg/m3[1]. The temperature rise when
applying 1 MW/m2 of a time of 50 µs is approximately 0.22 K. The width
of the temperature profile is harder to estimate due to the lack of a formula.
A reasonable guideline may be to take the sigma after 25 µs of free diffusion

σ =
√

2λt/(ρc) ≈ 80 µm. The figure 1 shows a numerical simulation of the
same conditions. The results fit very nicely with the analytic predictions.
The figure 2 shows a continuation of the case in figure 1. After 50 µs the
heat source was switched off and the heat allowed to diffuse for 150 µs.
The result agrees with a gaussian shape as predicted. The predicted σ is
0.23 mm, the maximum height 0.55 K. These numbers agree reasonably with
the simulation considering the fact that the two scenarios do not completely
agree. The simulated σ is 0.21 mm, the maximum height 0.59 K.

At lower temperatures the heat capacity is considerably reduced whereas
the heat conductivity goes up. At 80 K the heat capacity is 201 J/(kg
K) and the heat conductivity 557 W/(m K)[2]. Under otherwise identical
circumstances the temperature rise increses to 0.25 K after 50 µs of rf. The
depth of the temperature profile changes to σT ≈ 100 µm.

The table 1 shows the values to be expected in the FNPL rf gun. The
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Figure 2: Temperature map of solid copper irradiated with an intensity of
1 MW/m2 for a duration of 50µs. Afterwards the heat diffused without
external source for 150 µs.

peak dissipated power at room temperature is 12.2 MW/m2. At 80 K this
goes down to 4.3 MW/m2. The corresponding temperature rise is approx.
1 K. The depth of the heated sections is σT ≈ 100 µm.

5 Conclusion

The heat dissipation into a solid has been derived. Applying the results to
the simulated power dissipation for the FNPL rf gun yields temperature rises
of up to 1 K. These will be present for a few milliseconds only before the
energy spreads. The outside walls will never see a temperature rise besides
that due to the average heat load.
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No Zend Rend Emax Power P/A 4T
[cm] [cm] [MV/m] [kW] [kW/cm2] [K]

0.000 0.00000
1 0.000 8.91914 35.0000 284.6486 1.1390 32.3
2 5.715 8.91914 0.3997 363.1153 1.1338 32.1
3 6.350 8.28414 2.6791 63.1841 1.1615 32.9
4 6.350 2.75000 39.6594 225.6320 1.1761 33.3
5 7.100 2.00000 43.2164 1.9110 0.1136 3.2
6 7.850 2.75000 43.0464 1.9279 0.1146 3.2
7 7.850 8.28414 39.7899 227.6064 1.1864 33.6
8 8.485 8.91914 2.6940 63.7524 1.1719 33.2
9 18.280 8.91914 0.4080 631.8313 1.1510 32.6
10 18.280 2.65000 38.4996 277.8765 1.2195 34.9
11 19.030 1.90000 42.3345 2.0868 0.1298 3.9
12 25.580 1.90000 12.3523 0.0537 0.0007 0.0
13 30.000 1.90000 0.0024 0.0000 0.0000 0.0

Total 2143.6261

Table 1: Results from SUPERFISH on the power dissipation by the rf field in
the cavity walls. The peak accelerating field was 35 MV/m the temperature
300 K. This corresponds to a surface resistance of 9.41 mΩ. At 80 K the
surface resistance is 3.32 mΩ and hence the power dissipation a factor of 2.8
smaller. The temperature rise has been calculated for T0 =80 K and after
an rf pulse length of 50 µs.
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